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On the conformal invariance in quantum electrodynamics 
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Institute for Nuclear Research and Nuclear Energy, Bod.  Lenin 72, Sofia 1113, Bulgaria 

Received 7 November 1979 

Abstract. A realisation.of the conformal group with operator-valued dimensions is found 
which leaves invariant the Dirac equation for the spinor electrodynamics with massless 
fermions. All conformally invariant two- and three-point Wightman functions are cal- 
culated and it is shown that they are in agreement with the equation. 

1. Introduction 

In the paper of Sotkov et a1 (1979) it was shown that the massless Dirac equation with 
electromagnetic interaction 

(where A, is the electromagnetic vector-potential and e is the dimensionless charge, 
e’ = a) is conformally covariant with respect to at least two different representations of 
the conformal group. The first of them is the well known linear representation for the 
fields A, and 4, according to which both these fields have canonical conformal 
dimensions. The second is not standard at all. It is nonlinear, and in addition the 
conformal dimension of the field $, being an operator, is in fact not determined. Both 
these representations determine, up to multiplicative factors, all of the two- and 
three-point Wightman functions of the fields A,, and 4, provided the vacuum is 
conformally invariant. The corresponding expressions for these functions are different 
for the two different representations. As is well known, in the first case the Wightman 
functions of the fields A, and 4 coincide with the corresponding free fields functions. 
This means that one obtains only trivial solutions of equation (1.1) (A, = 0) in that case. 

The second case is treated in detail in the paper by Sotkov et a1 (1979) (to be referred 
to as I). It is shown there that the resulting two- and three-point Wightman functions 
correspond to solutions of equation (1.1) that are pure gauges. 

In the present paper we find a third representation of the conformal group for the 
fields A,., and 4, with respect to which equation (1.1) is invariant. Using the method 
introduced in I, we obtain the two- and three-point Wightman functions and then show 
that they are compatible with the equation. Further, it appears that these functions 
correspond to a certain solution of equation (1.1) for which the vector potential contains 
transversal terms. Thus the two- and three-point Wightman functions obtained in the 
present paper give an example for the possible exact expressions for these functions in 
the massless spinor electrodynamics. 
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2. Conformal transformations for the electromagnetic potentials 

The analysis of the conformal invariance of the massless quantum Thirring model (see 
Hadjiivanov et a1 1979) shows that the field operators transform according to a certain 
continually reducible representation of the two-dimensional conformal group. The 
operator-valued conformal dimensions were introduced for the first time in this paper. 
The four-dimensional gradient model of the quantum electrodynamics in this respect is 
quite analogous to the Thirring model (see I). Here again the leading role among the 
representations with operator-valued dimensions is played by the nonlinear represen- 
tations of the conformal group, in four-dimensional space-time in this case. Con- 
ventionally, we call basis representations those of the representations that arise in the 
homogeneous space of the conformal group. The transformations for the scalar field 
S(x) and the vector field A,(x) discussed in I are basic nonlinear realisations. We 
briefly recall some of the main features of their structure. 

The field S(x), being a Lorentz scalar, transforms non-homogeneously under the 
action of the scale and special conformal transformations. The equation invariant with 
respect to these transformations is 

O2S(X) = 0 (2.1) 
where 0 is the D'Alembert operator. If S*(x) are the frequency parts of S(x), then the 
commutator 

[S"(x), S-(y)] = -iAE+(x - y )  

E+(X)  = i(4.rr)-' ln(-p2x2 - iOxo) 
where 

and p is an arbitrary constant with the dimension of a mass. In terms of the frequency 
parts the discussed transformations have the. following form: 

UD(r)S*(x)Uiil (r) = S*(rx) + eq* In r 

~ , ( a ) ~ * t ( x ) ~ ; ; '  (a) = S*t(x'K')-eq* lnlp(a, x)l 

(2.3) 

(2.4) 
where UD(r) and U K ( a )  are the operators of the representations of the scale (with 
parameter r) and the special conformal (with parameter a =(a,>, p = 0 ,1 ,2 ,3 )  trans- 
formation respectively and 

(2.5) x f )  = (x, +x'a,)/p(a, x), p(a ,  x)  = 1 + 2(ax) + a2x2.  

As was shown in I, the quantities q* are constant operators related to S(x) in the 
following way: 

where e is the invariant charge. 

and q- with the fields S*(x) and the commutator of q+  with q-: 
Formula (2.6) gives the possibility to calculate the commutators of the operators 4+ 
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Equations (2.7) being obtained, one can immediately check the invariance of equations 
(2.1) and (2.2) with respect to the transformations (2.3) and (2.4). 

The field A,  ( x )  is a vector field and its scale and special conformal transformations 
are also non-homogeneous. However, these transformations can be obtained from 
(2.3) and (2.4) by differentiating the latter equations, since A , ( x )  and a,S(x) transform 
equivalently. That is why the conformally invariant two- and three-point Wightman 
functions of the field A,(x) are pure longitudinal. It is the field A , ( x )  that is used in I in 
order to obtain a conformally covariant description of the gradient model of quantum 
electrodynamics. 

However, besides the basis representations there are other nonlinear realisations of 
the conformal group. They arise from the linear representations through redeter- 
mination of the linearly transforming fields with local transformations belonging to the 
same group (for these transformations see e.g. Salam and Strathdee (1969) for the 
conformal group and Ogievetsky (1973)t for the general case). That is why we will 
conventionally call such nonlinear realisations derivative realisations. 

Let a vector field h,(x)  with canonical conformal dimension be given, i.e. 

Here and in the following we shall use the R-inversion instead of the special conformal 
transformations. That is why in equation (2.9) UR denotes the operator of the 
representation of the R-inversion, and 

x ( R ) r  = - x @ / x 2 ,  (2.10) 

S*(x )h, ( x  1. (2.11) 

Consider the quantity 

They are again vector fields, but transform according to a derivative nonlinear 
realisation of the conformal group. We suppose that the vector potentials of the 
electromagnetic field transform according to this realisation of the conformal group. 

If we forget the concrete expression (2.11) we can think that the electromagnetic 
vector-potential can be decomposed into two parts, Ai  ( x )  and A;(x) ,  that transform 
with respect to the conformal group in the following way: 

UD(r )AE(x)Ui i l  ( r )  = rA$(rx)+eq*r  In rh,(rx) (2.12) 

(2.13) 

(it is evident that in particular S*(x)h ,  ( x )  transform exactly according to equations 
(2.12) and (2.13)). 

We consider these transformations in the quantised case with the additional 
assumption that 4* and h,(x)  commute, while the commutator 

[4*, AZ(x)I  = T ( e / x ) h , ( x ) .  (2.14) 

We only postulate the latter commutators although one can put forward certain 
considerations in their favour. We just note that equation (2.14) is implied by equations 

t Here one can find further references on the nonlinear realisations of Lie groups. 
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(2.12) and (2.13) and the assumption of commutativity of q* and h,(x) .  (Of course q* 
are invariant operators here, as in the case of the realisation (2.3) and (2.4)). 

Using equation (2.14) one can write down equations (2.12) and (2.13) in the 
following form: 

(2.15) UD(r)AE(x)UG1 ( r )  = rl*xq+q- AE(rx)rsxq+q- 

(2.16) 

In the latter expressions the field h, (x )  does not enter explicitly. It is evident also that 
they coincide with (2.8) and (2.9) if one substitutes there h , ( x )  instead of A,(x).  

3. Conformal transformations of the spinor field 

According to our assumptions the electromagnetic potential is transformed by means of 
equations (2.15) and (2.16) (or equivalently equations (2.12) and (2.13)). If we use 
these transformations for A,(x) in equation (1.1) and ask for the latter to be invariant 
we can derive the conformal transformations of the spinor field $ ( x )  also. However, 
before doing this it is necessary to determine the RHS of equation (1.1) in terms of the 
fields that have already been introduced. In the previous section the signs ‘k’ of the field 
A ,  were introduced in analogy to the expression (2.1 1) and their meaning ought to be 
denoting the frequency parts. If such an assumption is right then 

: A , ( x ) $ b ) :  = A;(x)$(x)+$(x)A,(x) .  (3.1) 
The judgement whether this assumption is correct can be uniquely held from the 
requirement for conformal invariance of the equation. Let us substitute (3.1) into 
equation (1.1) and make a conformal transformation. In order for equation (3.1) to 
keep its form invariant, it is necessary to assume the following transformations for the 
spinor field: 

$(rx)rxq+q-  (3.2) W r ) $ ( x ) ~ l ( r )  = r 

UR$(X)&l = I x21 -2 -xq+q-  X $ ( X ( R ) ) I X Z I - x q + q - .  A 9 x* = yPx,  (3.3) 

3 /2+xq+q-  

(up to now the problem for the commutators of 4* and $ has not arisen). 
Nevertheless, after this procedure equation (1.1) does not obtain its initial form. 

One can see that there do not exist any meaningful reformulations of equations (2.15) 
and (2.16) or (3.2) and (3.3) that are capable of keepingequation (1.1) invariant. So we 
come to the conclusion that equation (3.1) is not correct for the field with the conformal 
properties that we have introduced. 

If, however, instead of (3.1) we take for the definition of the quantity :A,(x)$(x):  
the formula 

(3.4) 

where 
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then we can immediately show that equation (1.1) is conformally covariant with respect 
to the transformations (2.15), (2.16), (3.2) and (3.3). The proof of this statement is 
given in the Appendix. One can see that it is not necessary to commute q+ and q- with 
$ ( x )  in the course of this proof. However, the latter commutators are necessary when 
one calculates the Wightman functions. We postulate them as for the case of the 
commutators (2.14). Namely, we suppose that 

[4*,9(x)I= O h )  (3.5) 

where U +  = (U-)*  (* denotes complex conjugation) is a complex number. In general we 
write down equation (3.5) in analogy to the corresponding equation for the gradient 
model. On the other hand, equation (3.5) is the simplest conformally invariant 
commutator. Besides the commutator (3.5) we have also 

[4*, 3(x)1= - w * i ( x ,  (3.6) 

where $ ( x )  is the Dirac conjugated field. 
Finally we must consider the correlations of the spinor field $ ( x )  with the ‘bare’ field 

h, (x ) .  Since the latter field is transformed according to the canonical conformal 
transformation it is evident that it is a free field. That is why we ought to suppose that 

[ $ ( x * ) ,  hrr(x2)I = 0. (3.7) 

4. Two- and three-point Wightman functions 

Consider the vacuum of the theory, based on the quantised equation (1.1) with the 
definition (3.4), to be conformally invariant: 

V D l o )  = VR 10) = lo). (4.1) 

Then we can calculate the two- and three-point Wightman functions and check their 
compatibility with equation (1.1). The method of obtaining these functions is well 
known and has been already used in I (see also Todorov et a1 (1978)). We omit the 
details of the calculations and will write down just the equations and their general 
solutions, 

We begin with the two-point function of the fields. We denote this function by 

a,, ( ~ 1 2 )  = (OIA, (xdA,(xz)lO). (4.2) 

Then the conditions of scale and R invariance read as follows: 

S,,(xlZ) = r 2 S , , ( r ~ 1 2 ) + ( 2 e 2 A / x )  In ra,a, Inlx:zl 

where A is a normalisation constant of the two-point function of the field h, (x ) :  

~19!(xl2)~(01h,(xl)hu(xz)lO) = Aa,a, lnJxL1. 

The non-homogeneous terms in equations (4.3) arise from the commutation of the 
operators q+ and q- with the field A,(x).  In this procedure according to equation (2.14) 
the fields h,(x)  occur, thus relating the functions S,,(XIZ) and S$!(xlz). 
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The general solution of the functional equations (4.3) has the form 

S,u(x12) = -(e2A/x) lnl~:~la,a, lnlx:2 I + Cap& lnlxh I (4.4) 
(C is an arbitrary constant). This function has the remarkable feature that it contains a 
transversal term, Indeed it is not difficult to show that the function (4.4) can be written 
in the form 

(4.5) e2A g, S,u(x12) = - ++gauge terms. 
x x12 

Consider now the two-point function of the spinor field 

Gup(xiz) = (OIJp(xi)& (xz)IO). (4.6) 
The requirements for scale and R invariance lead to the standard equations, which is 
why we do not write them here. We just write down the expression that is obtained for 
the function (4.6), 

(4.7) 2 - 2 - x o + w -  G(xiz) =Nfiz(xiz) 

where N is an arbitrary constant. 

scale and R invariance for the function 
At last one can obtain the three-point function analogously. The requirements for 

rp,ap(xl, x 2 ,  x 3 )  = ( o l J p ( ~ 1 ) ~ ~ ( ~ 2 ) ~ u ( ~ 3 ) l o )  (4.8) 

It is evident that these equations are the standard ones and that is why their general 
solution is well known to be 

(4.11) 

where C1 and C2 are arbitrary constants. 
In order to fix these constants we consider the function 

FJX12) = (OIJ(x1) : A p ( X Z M ( X 2 )  : 10). (4.12) 

It is evident that according to the definition (3.4) the latter function should be obtained 
by means of the following equation: 

The condition of existence of a non-zero limit (4.13) gives the possibility of fixing the 
arbitrary constants C1 and C2. Indeed, let us substitute r,(xl, x2 ,  x 3 )  and G(x13) from 
(4.7) and (4.11), respectively, into (4.13). If we now assume that 

C1= -(ixw+w-/e)N while C2 = 0 (4.14) 

then the limit (4.13) exists and 

f‘, (x12) = (2ixo+~-/e)Nf~~(~~~),(~:~)-~-~~+~-. (4.15) 
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Finally we can show that the Wightman functions obtained previously in this section 
are consistent with equation (1.1). For this purpose we denote the argument in 
equation (1.1) by x 2 ,  then multiply both parts of this equation on the left by J ( x 1 )  and 
take the mean value of the so-obtained operator equality. As a result, we have 

i V & , G ( x d  = ey’”p,(X12). (4.16) 

It is not difficult to substitute (4.7) and (4.15) into (4.16) and see that it then becomes an 
identity. 

5. Gauge invariance 

The gauge invariance of (1.1) gives certain additional relations between the Wightman 
functions obtained in the previous section. Leaving aside the problem for the possible 
local gauge transformations that keep equation (1.1) invariant, we consider only those 
gauges that are related to the field S ( x ) .  The latter transformations have the form 

They are one-parametric and z is their parameter. Now the electromagnetic field 
A e ( x )  has a new transformation law with respect to the conformal group. We do not 
write down these laws, since the Wightman function 

s e u ( x 1 2 )  = (OlAe(Xl)A%2)10> (5.3) 
can be obtained directly from (5.1), taking into account (2.2) and (4.4). It appears that 
the function S~ , , (x lZ)  has the same form as (4.4) but with a different constant C. The 
new constant has the form 

Cg=Az2+C. (5.4) 

At the same time, the transformation (5.2) changes the degree of the homogeneous 
two-point function of the spinor field. Indeed, the conformal transformations of the 
field I+P(x) now have the form 

U ~ ( , . ) $ ~ ( ~ ) U ; I  = , ,3/2+w+q--ie2zq+ $Lg(rX)rw+q- - i eZzq -  ( 5 . 5 )  

X * + g ( X ( R ) ) I X 2 1 - x q + q - + i e * z q -  (5.6) u R $ g ( X ) u R 1  = Ix I 

[4*+g(x)1 = w ; l L g ( X )  (5.7) 

2 -2--xq+q-+iezzq+ 

and 

where 

w ;  = w * t f i h ( 4 ~ ) - ~ z .  (5.8) 
If we calculate again the Wightman function (4.6), we obtain 

(5 .9)  

These results show that the constants that appear in the Wightman functions are related 
in some way. In particular, this correlation can be taken into account, if we consider the 
quantities C, U* and d (the power in formula (5.9)) as functions of the gauge parameter 
z.  Taking into account (5.8), we see that w * ( z )  are linear functions of z,  and since the 

2 -2 -2xw:o  .-ie2z(o,-w:) 
G8(Xiz) ~ ( O / 6 8 ( x i ) $ g ( x d 1 0 >  =X*izbiz) 
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additional gauge term in w * is imaginary, we come to the conclusion that 

Then for 

we have 

Re  w ‘(2) = u1 = constant. 

Im w + ( z )  = c 2 ( z )  

~ ’ ( 2 )  = [A/(~T)’]z + B. 
We denote by d ( z )  the power on the RHS of (5.9),  i.e. 

d ( z )  = - 2 - 2 x w i ( z ) o - ( z ) + i e 2 z [ w + ( z ) - w - ( z ) ] .  

Then from (5.10) and (5.11) we obtain 

w * ( z )  = * [ ~ A / ( ~ T ) ~ ] Z  *iB +al. 

Substituting (5.13) into (5.12) we obtain 

he2 
e’(& +B2) -6eZBz  -- 3 2 ~ ’  

A (47# ‘ 
d(Z)  = -2 -- 

Finally, bearing in mind (5.4), we have 

C ( z )  = AzZ + Co. 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Equalities (5.13), (5.14) and (5.15) show how one must bring into agreement the basic 
characteristics of the Wightman functions U * ,  d and C in the case of fixed gauge. Given 
the constants CO, a1 and B, each value of z corresponds to a certain gauge, and then 
using equations (5.13), (5.14) and (5.15) one can calculate the mutually consistent 
values of U * ,  d and C in this gauge. 
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Appendix 

Bearing in mind formula (3.4), equation (1.1) can be written as 

i r ” W ( x )  = lim {A;(Xl)$(XZ) + $(xz)A;(xl) 
xz+x1=x 

-i(x/e)% lnlx:z1[4+4-$(xz) + $(x2)4+q-l1. (-41) 
(a) Proof of scale invariance 

Multiplying equation (Al )  from the left by V D ( r )  and from the right by U;’ ( r ) ,  and 
taking into account equations (2.15) and (3.2), we have 

5/’+xq+q- iyc” $J$ ( r X ) r x q + q -  

- - r5/2+xq+q-eyfi lim (A:(rxl)$(rx2) + $(rxz)~;(rxl) 
x*-’x1=x 

e 
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where a:= a/arxc”.  Cancelling from the left the factor r5’2+xq+q- and from the right the 
factor rxq+q- we obtain the initial equation at the point x ’  = rx and this completes the 
proof. 

We multiply this equation from the left by UR and from the right by UR1 and make use 
of formulae (2.16) and (3.3). After making the necessary cancellations we obtain the 
transformed equation in the form 

(b) Proof of R-invariance of equation (Al )  

[A:(x‘p’)$(xiR’) + $ ( X ~ ~ ) ) A ; ( X ! ~ ) ) ]  

- i ( x / e ) a ,  Inlx:2 l [q+q-9(xiR’)  + $(xiR))q+q-] )  . (A2) 

The first term on the RHS of (A2) is obtained through the following sequence of 
equalities: 

Let us introduce the notation 

Then we have the following identity: 

where aLR) denotes the operation a / a x ( R ) V .  Substituting the last identity into the second 
term of the RHS of equation (A2), we obtain 

Finally, it is necessary to make use of one more identity. After cancelling the 
non-degenerate matrices f / x 2 ,  we see that equation (A2) coincides with equation (Al )  
at the point x 1  = x ( ~ ) ,  

Thus the scale and special conformal invariance of equation (Al)  is proved. 
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